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In this paper, we present the fundamentals of the so-called algebraic approach to
propositional quantum logics. We define the set of formulae describing quantum
reality as a free algebra freely generated by the set of quantum proportional variables.
We define the general notion of logic as a structural consequence operation. Next, we
introduce the concept of logical matrices understood as a model of quantum logics. We
give the definitions of two quantum consequence operations defined in these models.
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1. INTRODUCTION

Historically speaking, we can distinguish two different and competitive ways
of understanding of the concept of “logic.” An approach considering the logic
as a set of logically valid sentences was the first manner of understanding logic.
In this approach, one can perceive a logical system as a set of sentences closed
under substitutions and some rules of inference. A paradigmatic example is a
set of tautologies of classical propositional calculus. Second and more general
approach enables one to comprehend a logic as a logical consequence operation
(or relation). This approach formalizes the most general principles of reasoning
and not a set of logically valid sentences. Following the second approach, one
will uniquely obtain a set of logically valid sentences as a set of consequences of
an empty set of premises. Following the first approach, i.e., starting from a set of
logically valid sentences, one will not obtain a uniquely determined consequence
operation. So, there usually exist plenty of consequence operations for a given
logical system.
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Summing up above considerations can claim that logical validity does not
determine the rules of reasoning. Hence, the notion of logic can be understood
as a structural consequence operation discussed in detail in Section 3. In the
literature concerning quantum logic, there are only several articles dealing with
quantum logic as a structural consequence operation. In the opinion of many
logicians the notion of logic as a structural consequence operation is one of
the most important logical concepts. Considering logic as a structural conse-
quence, operation belongs to the heritage of the Lvov–Warsaw school of logic
and constitutes the basis for the development of so-called abstract algebraic logic
(Font et al., 2003). The process of logical system algebraization is rooted in
the belief that this process allows us to investigate general properties of logical
systems.

The idea of a logical calculus based on the relation between the properties
of a physical system and the self-adjoint projection operators defined on a Hilbert
space can be traced back to the work of von Neumann (Birkhoff and von Neumann,
1936). In our papers, we follow the so-called Geneva Approach to the foundations
of quantum physics (Aerts, 1999; Piron, 1976). This approach can be alternatively
termed Operational Quantum Logic (Smets, 2001) and corresponds to the theory
of “Property Lattices.”

The general idea of Operational Quantum Logic is to give a complete formal
description of physical systems in terms of their actual and potential properties
and a dual description in terms of their states.

Fundamental notion of quantum logic is that of “yes–no question” or “definite
experimental project”. A “yes–no” question α ∈ Q is an experimental procedure
and can be understood as a list of concrete actions accompanied by a rule that
specifies in advance with outcomes count a positive response. A question is named
“true” for a particular physical system if it is certain that “yes” would be obtained
when the experimental procedure is performed, and is called “not true” otherwise
(Smets, 2001).

The main point being that the structure of mathematical representatives for
experimental propositions of a quantum system, corresponding to the projections
on a Hilbert space forms an orthomodular lattice—or equivalently—can be mod-
eled by orthomodular lattices.

Quantum logics (just like classical logic) are a kind of propositional logic.
They are determined by a class of algebras. These algebras are defined by a set
of identities. In other words, each logic is formalized by a set of axiom schemes
and inference rules which correspond to its defining set of identities. These logics
represent a natural logical abstraction from the class of all Hilbert space lattices.
They are represented respectively by orthomodular quantum logic (OQL) and by
the weaker orthologic (OL), which for a long time has been also termed minimal
quantum logic.
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This article tries to define two different notions of quantum consequence
operations: the weak one and the strong one (Section 3). In order to do that,
we must define the quantum sentential calculus as an absolutely free algebra
(Section 2). We will give full model-theoretic characterization of quantum logic,
which enables us to define two quantum consequence operations (Section 4).

2. PRELIMINARY REMARKS

Every algebra we consider here has the signature 〈A,≤,∩,∪, (.)′, 0, 1〉 and is
of similarity type 〈2, 2, 1, 0, 0〉. Algebraic structures, in particular algebras, will be
labeled with set of boldface complexes of letters beginning with a capitalized Latin
characters, e.g., A, B, Fm, . . ., and their universes by the corresponding light-face
characters, A,B, Fm, . . .. All our classes of algebra are varieties (we define variety
as an equationally definable class of algebra). The varieties of ortholattices are
denoted by OL. In order to show that, this class constitutes a variety explicitly, we
give its definition by the set of identities:

Definition 1. An Ortholattice is an algebraic structure U = 〈A,≤,∩,∪,′ , 0, 1〉
which satisfies the following identities:

x ∩ y = y ∩ x

x ∩ (y ∩ z) = (x ∩ y) ∩ z

x = x ∩ (x ∪ y)

x ∪ y = y ∪ x

x ∪ (y ∪ z) = (x ∪ y) ∪ z

x = x ∪ (x ∩ y)

x ∪ 1 = 1
x ∩ x ′ = o

(x ′)′ ∩ x = x

x ′ ∩ (x ∪ y)′ = (x ∪ y)′

x ′′ = x

In other words, an ortholattice is a bounded lattice with a unary operation (.)′

which satisfies the following: for any x , y ∈ A

(a) x ≤ x ′′

(b) x ∩ x ′ = 0
(c) x ≤ y implies y ′ ≤ x ′

The variety of OML of all orthomodular lattices, the class MOL of all modular
ortholattices and the class BA of all Boolean algebras are defined by adding the
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orthomodular law, the modular law and the distributive law respectively, to the
identities for OL.

One can represent it as follows:
For OML x ∩ {(x ∩ y) ∪ x ′} = x ∩ y (orthomodular law)
For MOL x ∩ {(x ∩ y) ∪ z} = (x ∩ y) ∪ (x ∩ z) (modular law)
For BA x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (distributive law)

All classes, we mention here are varieties being subvarieties of OL, and the relation
between these varieties is:

BA ⊆ MOL ⊆ OML ⊆ OL

Of course, there are many other subvarieties of OL not mentioned here.
In this introductory exposition we adopt a framework of binary logic intro-

duced by Goldblatt (1974). First, we define the system for a binary logic, which
corresponds to the OL variety, and then we extend this system by introducing
several axiom schemes.

Definition 2. An orthologic OL on the set of formulae includes the following
axioms and is closed under the following inference rules:

Axiom schemes Inference rules
(Ax 1) α 
 α (R 1) α
ββ
γ

α
γ

(Ax 2) α 
 ¬¬α

(Ax 3) α ∧ β 
 α (R 2) α
βα
γ

α
β∧γ

(Ax 4) α ∧ β 
 β

(Ax 5) α 
 α ∨ β (R 3) α
γβ
γ

α∨β
γ

(Ax 6) β 
 α ∨ β

(Ax 7) α ∧ ¬α 
 β (R 4) α
β

¬β
¬α

(Ax 8) ¬¬α 
 α

Subsequent logics are defined by adding additional axiom schemes:
The orthomodular logic (OML) α ∧ (¬α ∨ (α ∧ β)) 
 β

The modular orthologic (MOL) α ∧ ((α ∧ β) ∨ γ ) 
 (α ∧ β) ∨ (α ∧ γ )
The classical logic (CL) α ∧ (β ∨ γ ) 
 (α ∧ β) ∨ (α ∧ γ )

The relation between strengths of these logics is shown below:

OL → OML → MOL → CL → inconsistent logic

In considering propositional quantum logic, we follow the path taken by
algebraically oriented logicians. We define a sentential language as an absolutely
free algebra. As a consequence of such definition we can adequately describe basic
properties of the propositional language (Font et al., 2003).

First, we introduce the notion of the algebra of formulae and we denote it by
Fm. Fm is absolutely free algebra of type L over a denumerable set of generators
Var = {p, q, . . . , r}. The set of generators—Var—is identified with the countable
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infinite set of propositional variables. The universe of Fm algebra is formed of
inductively defined formulae. The set of formulae describing quantum entity is
inductively defined as the least set satisfying the following conditions:

(1) Var ⊂ Fm where Var = {p, q, . . . , r} is the set of quantum propositional
variables

(2) If p, q, . . . , r ∈ Fm, then finite sequence Fipqr also belongs to Fm for
any i = 1, 2, . . . ,n .

The Fm algebra is endowed with finitely many finitary operations (connec-
tives) F1, F2, . . . , Fn. Thus, Fm consists in the set of formulae together with
the operations of forming complex formulae associated with each connective.
The structure Fm = 〈Fm, F1, F2, . . . , F n 〉 is called the algebra of formulae—or
equivalently—the algebra of terms. The similarity type L of the algebra depends
on the number and arity of connectives.

The definition of language as a free algebra allows us to treat sentential con-
nectives as algebraic operations. The process of formation of complex propositions
from atomic ones is the algebraic process occurring between elements of a given
algebra.

3. CONSEQUENCE OPERATION AND LOGICS

In 1930, Tarski (1983) defined what later on was called finitary consequence
operation – Cn. A consequence operation is a particular case of a closure operation
(Burris and Shankapanavar, 1981). Consequence operation is a structural conse-
quence operation defined on the algebra of formulae if Cn satisfies the following
conditions (Font et al., 2003; Tarski, 1983):

(i) X ⊆ Cn(X) reflexivity
(ii) if X ⊆ Y then Cn(X) ⊆ Cn(Y ) monotonicity

(iii) Cn Cn(X) ⊆ Cn(X) idempotency
(iv) eCn(X) ⊆ Cn(e(X)) structurality

The last condition says that Cn is closed with respect to substitution i.e., Cn
is substitution-invariant. Algebraically speaking, substitutions occurring
in the algebra of terms can be understood as an endomorphism of these
formulae.
Substitutions in the sentential language are defined as functions from a set
of sentential variables into the set of formulae. Formally, a substitution is
the function

e : Var → Fm
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Based on the fact, that the algebra of terms is the free algebra the function
e can be extended to an endomorphism

he : Fm → Fm

Additionally, if Cn satisfies the following condition:
(v)

Cn(X) =
⋃

{Cn(Y ) : Y ⊆ X, Y is finite}
it is called a finitary consequence operation.

A consequence operation Cn on a set of formulae can be easily transformed
into a consequence relation 
Cn⊆ P (Fm) × Fm between subsets of Fm and ele-
ments of Fm by postulating for every X ⊆ Fm and every α ∈ Fm that

X 
Cn α if and only if α ∈ Cn(X)

P (Fm) is a power set of Fm.
A consequence relation inherits all its properties from properties of conse-

quence operation (i–v).
In our algebraic approach we identify the general notion of logic with the

structural consequence operation. The logic or deductive system in the language
of type L is a pair S = 〈Fm,
S〉 where Fm is the algebra of formulae of type L
and 
S is a substitution-invariant consequence relation on Fm, that is, a relation

S⊆ P (Fm) × Fm satisfying the conditions (i–iv). A logic S is said to be finitary
when its consequence relation satisfies the relational form of property (v), that is,
when for every � ∪ {φ} ⊆ Fm:

If � 
S φ then there is a finite �′ ⊆ � such that �′ 
S φ

In our article we restrict ourselves only to finitary logics.
An identification of the notion of logic with the notion of structural conse-

quence operation points out in one-to-one correspondence the set of all theories,
which can be defined on the set of formulae. The sets of the form X = Cn(X) are
called theories or deductive systems. On a fixed set of formula—Fm—one can
define many different structural consequence operations. The set of all structural
consequence operations form a complete lattice.

Based on Dishkant’s work (1974), we treat the language of quantum logics
as a free algebra. In the literature dealing with quantum logics, there exist two
different notions of logical consequence. They are determined by a class of ortho-
modular lattices. The first introduced notion of logical consequence in quantum
logic is created by Kalmbach (1983). A sentence α is a weak logical consequence
of the set X of sentences if and only if in every model and every valuation in
which, every sentence of the set X has a unit of certain orthomodular lattice as its
logical value, the sentence α has the unit as its logical value, too.
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In 1974, Goldblatt introduced the notion of strong quantum logical conse-
quence: sentence α is a strong logical consequence of the set of sentences X if
and only if for any orthomodular lattice A from a given orthomodular lattices and
any valuation v , v (β) ≤ v (α) for every β ∈ X (the symbol ≤ denotes the lattice
order of A).

All above concepts of quantum logical consequence presuppose the notion
of the model of quantum logics.

4. MODELS OF QUANTUM LOGICS

In our investigation, we employ the general method of constructing the models
of sentential calculus. We use the so-called matrix method, which allows us to
give a full algebraic description of quantum logics (Wójcicki, 1973, 1988).

By a logical matrix we mean a couple M = 〈A, F 〉 where A is an algebra of
the same similarity type as the algebra of terms of considered sentential language
and F is a subset of A called the set of designated elements of M. As indicated we
rule out neither that the set of designated elements F = ∅ nor that F = A. The
matrices of the form 〈A,∅〉 and 〈A, A〉 are referred to as trivial.

The general concept underlying the notion of logical matrix is that the algebra
of matrix A is similar to the algebra of formulae of a given propositional language.
In our case, the algebra A is similar to the algebra of terms of quantum logics in the
sense of Dishkant (1974). Such logical matrix can be understood as an algebraic
semantical model of the considered language or simply as algebraic semantics for
quantum logics.

The set A can be considered as a range of variability of propositional variables.
This set can be regarded as a set of semantic correlates of sentential variables (or
alternatively as a set of algebraic correlates of sentential variables; Wójcicki, 1973,
1988).

The concept of logical matrices regarded as models for sentential logics is
of particular importance. Every logical matrix consists of an algebra, which is
homomorphic with the algebra of terms of a given sentential language. Logical
matrices associated with quantum logics are formed of a variety of OL or OML.
These are “natural” classes of homomorphic algebras forming logical matrices.
There are many open questions as to whether other algebras e.g., Jordan algebras or
Grassmann algebra, can form logical matrices for the algebra of terms of quantum
propositions.

The above hints can be understood as a link between purely logical con-
siderations concerning bases of quantum theory and mathematical investigations
aiming at finding an appropriate algebraic structures describing quantum reality. In
this paper we restrict ourselves only to “natural” algebraic semantics for quantum
logics, i.e., the variety of OL and OML.
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Each formula φ of the language of quantum logic has a unique interpretation
in A depending on the value in A that are assigned to its variables.

Based on the facts that Fm is absolutely freely generated by a set of variables
(the set of free generators) and that A is an algebra of the same similarity type
as Fm, there exist a function f: Var → A and exactly one function hf : Fm → A,
which is the extension of the function f i.e., hf (p) = f (p) for each p ∈ Var. This
function is the homomorphism from the algebra of formulae into the algebra A of
the logical matrix M = 〈A, F 〉.

Now we can identify the interpretation of a given formula φ of Fm with h (φ)
where h is a homomorphism from Fm to A that maps each variable of φ into its
assigned value. A homomorphism whose domain is the algebra of terms is called
an assignment. One can alternatively write a formula φ in the form φ(x0, . . . , xn−1)
to indicate that each of its variables occurs in the list x0, . . . , xn−1 and we write
φA(a0, . . . , an−1) for h (φ) where h is any assignment such that h (xi ) = ai for
all i < ω. Given a quantum logic S in a language of type L, an L-matrix 〈A, F 〉 is
said to be a model of S if for every h ∈ Hom and every � ∪ {φ} ⊆ Fm

if h [�] ⊆ F and � 
S φ then h(φ) ∈ F

In this case it is also said that F is a deductive filter of S or, as is common now, an
S-filter of A (Font et al., 2003; Wójcicki, 1988). Given an algebra A of similarity
type L, the set of all S-filters of A, which is denoted by FiSA is closed under
intersection of an arbitrary family and is thus a complete lattice (Font et al., 2003).
By h ∈ Hom(Fm, A) we mean an homomorphism from the algebra of terms into
the algebra forming the logical matrices for quantum logics.

Given any set of formulae X ⊆ A, there is always the least S-filter of A
that contains X. It is called the S-filter of A generated by X and is denoted by
FiAS (X).The class of all matrix models of quantum logic S is denoted by ModS
or K.

Every logical matrix points out to a set of its own tautologies i.e., a
set of formulae such that h (α) ∈ F for α ∈ Fm for every homomorphisms
h ∈ Hom(Fm, A). The set of all tautologies of given matrices is denoted by E (M).
It is invariant with respect to the endomorphisms of the algebra of terms. Every
invariant set of formulae X ⊆ Fm may be represented as E (M) = X with an
appropriate matrix M. The above is the well known as Lindenbaum’s theorem
(Los and Suszko, 1962). For the purpose of its proof it is enough to consider the
matrix of the form 〈Fm, X〉. The matrices of this form are termed Lindebaum’s
matrices. For such matrices the valuations are simply endomorphisms of Fm (Los
and Suszko, 1962).

Also every logical matrix determines a so-called matrix consequence
operation—CM . For arbitrary X ⊆ Fm

CM (X) =
⋂

{h−1(F ) : h(X) ⊆ F, h ∈ Hom(Fm, A)}
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or equivalently: For arbitrary X ⊆ Fm and for arbitrary formula α ∈ Fm : α ∈
CM (X) ↔ for every h ∈ Hom(Fm, A)if h(β) ∈ F for every β ∈ X then h (α) ∈ F .

For every matrix the operation defined in such a manner is a structural and
uniform consequence. We call it the matrix-consequence (CM ; Los and Suszko,
1962).

In opinion of many logicians, the above statements present the nearest con-
nection between sentential logics and interpretations by matrices (Los and Suszko,
1962).

We ask what is the relationship between structural consequence operation
defined in Section 3, particularly strong and weak quantum logical consequence
and the so-called matrix consequence. We present here the theorem [without
proof, see Los and Suszko, 1962; Wójcicki, 1988] establishing the conditions,
which must be satisfied in order to Cn = CM .
Theorem (Los–Suszko, 1958; Wójcicki, 1988) Let Cn be structural consequence
operation (logic). Then Cn is a matrix consequence if and only if Cn is absolutely
uniform.

We call a consequence Cn uniform if and only if for all set of formulae
X, Y ⊆ Fm and for a formula α ∈ Fm, the following conditions are satisfied:

i) Var (X,α) ∩ Var (Y ) = ∅
ii) Var (Y ) �= Fm, Fm being the set of all formulae

iii) α ∈ Cn(X ∪ Y ) then
iv) α ∈ Cn(X)

The symbol Var (X) means all free sentential variables of the set of formulae
X. The equation Var (X,α) ∩ Var(Y ) = ∅ means that the set (X ∪ {α}) and Y have
no variables in common.

The logic Cn is said to be separable if and only if given two sets of formulae
X, Y of the language of Cn such that Var (X) ∩ V ar(Y ) = ∅ and given any variable
r /∈ Var(X ∪ Y ) the following condition is satisfied:

If r ∈ Cn(X ∪ Y ) then either r ∈ Cn(X) orCn(Y )

The separability condition can take the following stronger form.
A consequence Cn will be said to be absolutely separable if and only if for

each family R of sets of formulae such that for any two sets X, Y ∈ R if X �= Y

then Var (X) ∩ Var(Y ) = ∅ and for each propositional variable r /∈ Var(∪R)

If r ∈ Cn
(⋃

R
)

then r ∈ Cn(X) for some X ∈ R

A consequence that is both uniform and absolutely separable will be called abso-
lutely uniform.
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The logical matrices determining consequence operation, which is equal to
the structural consequence operation i.e., Cn = CM are called strongly adequate
logical matrices (Wójcicki, 1988).

As it is stated in Section 3 in the language of quantum logic, we can define
two different consequence operations: the weak one and the strong one.

The strong consequence operation is determined by the class of models of
quantum logic as follows:

� 
 φ iff ∀A ∈ OML,∀h ∈ Hom(Fm, A)∀a ∈ A

if a ≤ h(β)∀β ∈ � then a ≤ h(φ)

The weak consequence operation is determined by the class of models of
quantum logic as follows:

� 
 φ iff ∀A ∈ OML,∀h ∈ Hom(Fm, A) if h(β) = 1∀β ∈ � then h(φ) = 1

The names “weak” and “strong” are misleading because the weak quantum
consequence operation is the strengthening of the strong quantum consequence
operation (Malinowski, 1992).

In the above formal exposition of the two different definitions of quantum
logical consequence, we consider an algebra A as belonging to the variety of
OML. Based on the definition of quantum logical consequence we can uniquely
point out the classes of algebras constituting the matrix (algebraic) semantics for
quantum logics.

Corollary 1. The class of matrices

ModS = {(A, [a) : A ∈ ModS, a ∈ A}
is a matrix semantics for the strong version of quantum logic. [a) is a principal
filter of the form {x ∈ A : x ≥ a}

Corollary 2. The class of matrices

ModS = {(A, {1}) : A ∈ ModS}
is a matrix semantics for the weak version of quantum logic.

5. CONCLUSION

In our paper, we did not consider any physical implications of different forms
of quantum logical consequence operations. Following the main idea that any logic
can be understood as a structural consequence operation, we indicated adequate
semantics for quantum logics. Investigations carried out in this paper consist first
report concerning more general topic—“Inference in Quantum Logics.” We plan
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to present consequence operation define on Greechie diagram. In order to do that,
we will introduce the notion of Greechie diagram satisfiability. Results of these
investigations will be presented elsewhere.

These are also reports treating consequence operation in quantum logics as a
kind of nonmonotonic reasoning (Engesser and Gabbay, 2002). Above approach
will be confronted with our statements considering consequence operation in
quantum logics as a kind of monotonic reasoning.
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